Муниципальное общеобразовательное учреждение «Гимназия № 6 Красноармейского района Волгограда»

Принято с учетом мнения Педагогического совета МОУ гимназии № 6 Протокол № 01 от 01.09.2025 г. гим «01» сентября 2025 г.

Утверждено Директор МОУ гимназии № 6 -С.Ю. Игнатьева

Введено в действие приказом директора МОУ гимназии № 6 № 121 от 01.09.2025 г.

РАБОЧАЯ ПРОГРАММА

Курс по выбору «Трудные вопросы физики» для учащихся 10-х классов рассчитан на 34 часа (1 час в неделю)

Пояснительная записка

Настоящая программа является дополняющей материал к основному учебнику физики. Она позволяет более глубоко и осмысленно изучать практические и теоретические вопросы физики. Цель этого элективного курса — развить у учащихся следующие умения: решать предметно-типовые, графические и качественные задачи по дисциплине; осуществлять логические приемы на материале заданий по предмету; решать нестандартные задачи, а так же для подготовки учащихся к успешной сдаче ЕГЭ. Программа посвящена рассмотрению отдельных тем, важных для успешного освоения методов решения задач повышенной сложности. В программе рассматриваются теоретические вопросы, в том числе понятия, схемы и графики, которые часто встречаются в формулировках контрольно измерительных материалов по ЕГЭ, а также практическая часть. В практической части рассматриваются вопросы по решению экспериментальных задач, которые позволяют применять математические знания и навыки, которые способствуют творческому и осмысленному восприятию материала.

В результате реализации данной программы у учащихся формируются следующие учебные компетенции: систематизация, закрепление иуглубление знаний фундаментальных законов физики; умение самостоятельно работать со справочной и учебной литературой различных источников информации; развитие творческих способностей учащихся.

Для более полного понимания наблюдаемых физических процессов и явлений на демонстрационных опытах и лабораторных работах используется оборудование цифровой лаборатории центра «Точка роста». Широкий спектр цифровых датчиков позволяет учащимся знакомиться с параметрами физического эксперимента не только на качественном, но и на количественном уровне. С помощью цифровой лаборатории можно проводить длительный эксперимент даже в отсутствии экспериментатора. При этом измеряемые данные и результаты их обработки отображаются непосредственно на экране компьютера.

Цели курса:

- реализация программы подготовки учащихся старших классов к сдаче ЕГЭ по физике;
- развитие содержания курса физики, которое предусматривает не столько расширение теоретической части, сколько углубление его практической стороны за счет решения разнообразных задач;
- формирование и развитие у учащихся интеллектуальных и практических умений в области решения задач различной степени сложности.

Задачи курса:

- сформировать понимание сущности рассматриваемых физических явлений и применяемых физических законов;
- сформировать умения комплексного применения знаний при решении учебных теоретических и экспериментальных задач;
- способствовать интеллектуальному развитию учащихся, формированию логического мышления;
- развитие самостоятельности и личной ответственности за принятие решений;
- -приобретение опыта использования различных источников информации и информационных технологий для решения познавательных задач;
- –помощь старшеклассникам в оценке своего потенциала с точки зрения образовательной перспективы.

Общая характеристика курса

Данный курс связан идейно и содержательно с базовым курсом физики старшей школы и позволяет углубить и расширить знания учащихся, их умения решать задачи повышенной сложности, что особенно важно при сдаче Единого Государственного Экзамена по физике.

Реализация учащихся ЕГЭ программы подготовки К осуществляется посредством повторения теоретического материала курса физики школы, разбора решений типовых задач из всех изучаемых разделов физики, тестов $E\Gamma$ и U прошлых лет и задач повышенной трудности, требующих комплексного применения физических знаний из различных разделов школьного курса физики. В ходе обучения методам решения задач происходит формирование научных знаний, получают развитие умения физические и математические модели явлений и процессов, отрабатываются навыки использования основных математических приемов, поднимается на целесообразность применения основных или новый уровень осознанная единиц измерения производных физических величин. Решение технического и исторического содержания несет в себе воспитательные функции.

1. Место учебного курса в учебном плане

Рабочая программа рассчитана на 34 часа учебного времени, занятия по 1 ч. часа в неделю.

2. Содержание курса

I. Эксперимент – 1 ч.

Основы теории погрешностей. Погрешности прямых и косвенных измерений. Представление результатов измерений в форме таблиц и графиков.

II. Механика – 16 ч.

Кинематика поступательного движения. Уравнения движения. Графики основных кинематических параметров. Криволинейное движение.

Динамика. Законы Ньютона. Силы в механике: силы тяжести, упругости, трения, гравитационного притяжения.

Статика. Момент силы. Условия равновесия тел. Гидростатика.

Движение тел со связями – приложение законов Ньютона.

Законы сохранения импульса и энергии и их совместное применение в механике. Уравнение Бернулли — приложение закона сохранения энергии в гидро- и аэродинамике.

III. Молекулярная физика и термодинамика –12 ч.

Статистический и динамический подход к изучению тепловых процессов. Основное уравнение МКТ газов.

Уравнение состояния идеального газа — следствие из основного уравнения МКТ. Изопроцессы. Определение экстремальных параметров в процессах, не являющихся изопроцессами. Газовые смеси. Полупроницаемые перегородки.

Первый закон термодинамики и его применение для различных процессов изменения состояния системы. Термодинамика изменения агрегатных состояний веществ. Насыщенный пар.

Второй закон термодинамики, расчет КПД тепловых двигателей, круговых процессов и цикла Карно.

Поверхностный слой жидкости, поверхностная энергия и натяжение. Смачивание. Капиллярные явления. Давление Лапласа.

IV. Электродинамика (электростатика и постоянный ток) – 5 ч.

Электростатика. Напряженность и потенциал электростатического поля точечного и распределенных зарядов. Графики напряженности и потенциала. Принцип суперпозиции электрических полей. Энергия взаимодействия зарядов. Конденсаторы. Энергия электрического поля. Параллельное и последовательное соединение конденсаторов. Перезарядка конденсаторов. Движение зарядов в электрическом поле. Расчет количества теплоты, выделяющегося при соединении конденсаторов.

Таблица тематического распределения часов

Номер	Разделы и темы программы	Количеств
раздел		о часов
a		
I	Эксперимент	1
II	Механика	16
III	Молекулярная физика и термодинамика	12
IV	Электродинамика (электростатика и постоянный ток)	5

Формы и виды самостоятельной работы и контроля

Самостоятельная работа предусматривается в виде выполнения домашних заданий. Минимально необходимый объем домашнего задания — 5-7 задач (1-2 задачи повышенного уровня с кратким ответом, 1-2 задачи повышенного или высокого уровня с развернутым ответом, остальные задачи базового уровня.

Предусматриваются виды контроля, позволяющие оценивать динамику освоения курса учащимися и получать данные для дальнейшего совершенствования содержания курса:

- текущие десятиминутные мини-контрольные работы в форме тестовых заданий с выбором ответа (эти работы представлены в следующих пособиях: Касьянов В.А. и др., «Физика. Тетрадь для контрольных работ. Базовый уровень. 10-11 класс: тесты», «Физика. Тетрадь для контрольных работ. Профильный уровень. 10-11 класс»);
 - -контрольные работы по окончании каждого раздела;
 - итоговое тестирование в форме репетиционного экзамена.

Оценивание заданий контрольной работы: задача с выбором ответа -1 балл, задание на соответствие -1-2 балла, задача повышенного уровня сложности -2 балла, задача высокого уровня -3 балла.

Критерии оценивания контрольной работы:

- оценка «5» 15-16 баллов
- оценка «4» 11-14 баллов
- оценка «3» 6-10 баллов
- оценка «2» 0-5 балла

при подготовке вариантов контрольных работ целесообразно охватить заданиями возможно более широкий круг вопросов и на дом задать решение задач другого варианта контрольной работы.

3. КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

№ ypo	Содержание (разделы, темы)	Количес тво часов	Даты проведения		Оборудова
ка			План	Фак	ние урока
	І. Эксперимент	1			
1	Основы теории погрешностей	1			
	II. Механика	16			
2	Кинематика поступательного движения	1			
3	Уравнения движения	1			
4	Графики основных кинематических параметров	1			
5	Криволинейное движение	1			
6	Решение задач по кинематике	1			
7	Динамика. Законы Ньютона.	1			Цифровая лаборатория Releon lite
8	Силы в механике.	1			
9	Движение связанных тел	1			
10	Решение задач по теме «Динамика»	1			
11	Статика. Условие равновесия тела.	1			
12	Центр тяжести. Виды равновесия.	1			
13	Гидростатика	1			
14	Закон сохранения импульса	1			
15	Закон сохранения механической энергии	1			
16	Решение задач по теме «Законы сохранения». Уравнение Бернулли	1			
17	Контрольная работа №1 по теме «Механика»	1			
	III. Молекулярная физика и термодинамика	12			
18	Основы МКТ. Газовые смеси	1			Цифровая лаборатория Releon lite
19	Решение задач по теме «Уравнение состояния идеального газа»	1			
20	Решение задач по теме «Газовые законы»	1			

21	Решение графических задач по теме «Изопроцессы»	1	Цифровая лаборатория
	теме «изопроцессы"		Releon lite
22	Определение экстремальных	1	
22	параметров	1	
23	Полупроницаемые перегородки	1	
24	Первый и второй закон	1	
24	термодинамики	1	
	Агрегатные состояния вещества.	1	
23	Насыщенный пар	1	
26	Круговые процессы	1	
27	Поверхностный слой жидкости	1	
28	Тепловые двигатели.	1	
	Контрольная работа №2 по теме		
29	«Молекулярная физика и	1	
	термодинамика»		
	Электродинамика		
	(электростатика, постоянный	5	
	ток)		
30	Электростатика. Конденсатор	1	
21	Решение задач по теме	1	
31	«Электростатика»		
32	Энергия взаимодействия зарядов	1	
33	Соединение конденсаторов	1	
34	Расчет количества теплоты,	1	
	выделяюще-гося при соединении		
	конденсаторов		
	итого:	34час.	

4. Учебно-методическое и материально – техническое обеспечение образовательного процесса

- 1. Учебно-методическое обеспечение образовательного процесса
- 2. Физика. Решебник. Подготовка к ЕГЭ-2022. под ред. Л.М.Монастырского, -Ростов-на Дону, Легион, 2022.
- 3. А.П. Рымкевич. Сборник задач по физике. 10-11 класс. М.: Дрофа, 2012.
- 4. ЕГЭ-2010:Физика /ФИПИ авторы-составители: А.В.Берков, В.А.Грибов/
 –М: Астрель, 2009.
- 5. Самое полное издание типовых вариантов реальных заданий ЕГЭ 2009-2015. Физика / ФИПИ авторы-составители: А.В.Берков, В.А.Грибов/ –М: Астрель, 2009.
- 6. Н.А. Парфентьева. Сборник задач по физике. 10-11 класс: базовый и профильный уровни, М.: Просвещение, 2007.
- 7. Степанова Г.Н. Сборник задач по физике. М.: Просвещение, 1996.
- 8. Марон А.Е., Физика. Законы, формулы, алгоритмы решения задач: материалы для подготовки к единому государственному экзамену и вступительным экзаменам в ВУЗы. М.: Дрофа, 2008.
- 9. Гольдфарб Н.И. Физика: сборник задач для 9 11 кл. М.: Просвещение, 1997.
- 10.Орлов В. А., Никифоров Г. Г. «Единый государственный экзамен: Методические рекомендации. Физика», М., Просвещение, 2010 г.
- 11.Орлов В. Л., Ханнанов Н. К., Никифоров Г. Г. «Учебно-тренировочные материалы для подготовки к единому государственному экзамену. Физика», М., Интеллект-Центр, 2011 г.
- 12. Монастырский Л. М., Богатин А. С. «Физика. ЕГЭ 2009. Тематические тесты», Р-н-Д, Легион, 2008 г.
- 13. Демидова М. Ю., Нурминский И. И. «ЕГЭ 2009. Физика. Федеральный банк экзаменационных материалов», М., Эскимо, 2009 г.
- 14.3орин Н. И. «ЕГЭ 2009. Физика. Решение частей В и С. Сдаем без проблем», М., Эксмо, 2009 г.

Материально-техническое обеспечение образовательного процесса

Кабинет физики, компьютер, мультимедийная система, лабораторное и демонстрационное оборудование, цифровая лаборатория Releon lite Центра «Точка Роста»